

Espace de Hilbert et analyse de Fourier (MATH604_MATH)

En bref

> Langues d'enseignement: Français

> Ouvert aux étudiants en échange: Oui

Présentation

Description

Introduction aux notions et techniques de l'analyse hilbertienne.

Objectifs

Présentation du cadre théorique des espaces de Hilbert.

Application à l'étude d'espaces fonctionnels de dimension infinie.

Application à l'analyse de Fourier.

Heures d'enseignement

CM	Cours Magistral	22,5h
CM EFA	Cours magistral - Enseignement favorisant l'autonomie	1,5h
TD	Travaux Dirigés	27h
TD EFA	Travaux dirigés - Enseignement favorisant l'autonomie	3h

Pré-requis obligatoires

Algèbre linéaire (L1 et L2)
Formes quadratiques et espaces euclidiens (L2)
Espaces métriques et espaces normés (L3)
Intégrale de Riemann (L1 et L2)
Intégrale de Lebesgue (L3)
Suites et séries de fonctions (L2)
Séries de Fourier (L2)

Plan du cours

Séries de Fourier (rappels et compléments de MATH401). Fonctions périodiques, produit scalaire, polynômes trigonométriques, séries trigonométriques, coefficients de Fourier, somme et série de Fourier, égalité de Parseval, convergence ponctuelle, convergence uniforme pour les fonctions continues et C1 par morceaux, théorème de Dirichlet, théorème de Fejér.

Espaces pré-hilbertiens et espaces de Hilbert. Base orthonormée, relation entre l'espace et son dual, théorème de représentation de Riesz, familles totales, sous-espaces fermés, supplémentaire orthogonal, inégalité de Bessel, égalité de Parseval, théorème de Riesz-Fischer, espaces séparables.

Théorème de Lax-Milgram. Exemple des équations de Sturm-Liouville.

Applications aux séries de Fourier. Séries de Fourier dans le cadre hilbertien.

Transformée de Fourier sur L1. Dérivation, translation, transformée de Fourier inverse, espace de Schwartz, transformée de Fourier-Plancherel L2.

Compétences visées

Comprendre les outils de l'analyse hilbertienne.

Savoir utiliser le théorème de la projection pour résoudre des problèmes d'optimisation.

Reconnaître une base hilbertienne et savoir en tirer parti (polynômes orthogonaux, séries de Fourier, etc.).

Infos pratiques

Lieux

> Le Bourget-du-Lac (73)

Campus

Le Bourget-du-Lac / campus Savoie Technolac

